

GBM Burst Science Simulator

- → Goal: "Science Simulation" of GBM response to GRBs, solar flares, etc.
 - Use to study and optimize combined GBM/LAT burst trigger schemes
 - Use to investigate and develop joint GBM/LAT burst analysis tools

+ Components

- Detector response matrices (DRMs)
 - Including instrumental effects (resolution, thresholds)
- Background (vs. energy [time])
- Flight software/hardware processing
 - → Burst trigger, intensity, location(s), timing of alert messages, etc.

Approach

- Use prototype DRM database (generated with GEANT3)
 - → Baseline detector geometry (as proposed; 12 Nal, 2 BGO detectors)
 - → Direct response only (no spacecraft or atmospheric scattering included)
- Simple background model (based on BATSE data and simulations)
 - → Constant during burst
 - → Optional orbital variations between different bursts, and between detectors
- Simple treatment of on-board data processing
 - "BATSE-like" trigger algorithm
 - + In-flight burst response operations based on flight software requirements

Status: under test

GBM Burst Science Simulator Overview

GBM Burst Science Simulator Examples

Input: smoothly broken power-law model fits vs. time from Preece et al. (2000) BATSE catalog

